Many brain structures are known for carrying out more than one function. Among these the amygdala is particularly versatile as it has been implicated in cognitive processes that range from sensory-perceptual, to decision-making, and coordinates the elaboration emotional behaviors accompanied by autonomic responses. While no single functional definition can capture the role of the amygdala in the mammalian brain, the diversity of functions linked to the amygdala is likely reflected in the response properties of its component neurons. The goal of this study was to determine the extent to which single neurons in the macaque amygdala can exhibit multiple types of stimulus-selectivity and/or task-related responses in the context of the same task. The task required decision making based on learned stimulus-reward associations where the choices were two simultaneously playing videos with social or non-social content. We found that neurons in the amygdala were tuned to two or more of the following: (1) alerting stimuli pertaining to the task (fixation, stimulus onset and offset), (2) stimulus categories (social vs. non-social), (3) stimulus –unique features (faces, eyes), and (4) reward magnitude. A disproportionate number of neurons were modulated by all of the stimulus features and task events examined. These findings suggest that neurons in the macaque amygdala show multi-dimensional selectivity. Specialized subpopulations uniquely tuned to certain types of stimuli (e.g., faces) may, therefore, respond to other types of stimuli, or to behavioral events, if these stimuli become behaviorally relevant in the context of a complex task.