Executive functions (EFs) – higher order cognitive processes that allow individuals to regulate their thoughts and behaviors in order to achieve goals – are often disrupted in psychopathology. In fact, disruptions in EFs are so pervasive that EFs are frequently proposed as an endophenotype, or intermediate phenotype, for a number of psychiatric disorders. Using a well-characterized, latent variable model of EF, I investigate EFs' relations to problematic behaviors using a variety of methods. First, I will discuss this stable, highly heritable model of EF as a potential endophenotype for 5 disorders: Autism, Attention Deficit Hyperactivity Disorder, Bipolar disorder, Major Depressive Disorder (MDD), and Schizophrenia. In this study I used polygenic risk scores for these disorders to predict EFs. In general, cognitive lab-based measures have not been as fruitful as endophenotypes as initially hoped, so researchers have turned to cognitive neuroimaging networks to try to gain more leverage. In my second study I used the latent variable EF framework to characterize Common EF brain regions and compare them to a typical frontoparietal network often activated in EF tasks. Lastly, in my third study, I used a longitudinal twin sample to examine the relationship between sleep duration, depression, and EF. I focused on whether earlier sleep duration influences depression or EF throughout adolescence into early adulthood. I also asked whether genetic or environmental influences characterize relationships between sleep, depression, and EF, and whether or not the nature of these relationships changes throughout these developmental periods. Taken together, these studies help us to better understand EF‘s role in maladaptive behaviors. However, further research is still necessary; a logical next step is to examine the relationship between neural correlates of EF and psychopathology.